Metamath Proof Explorer


Theorem obsip

Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses isobs.v V=BaseW
isobs.h ,˙=𝑖W
isobs.f F=ScalarW
isobs.u 1˙=1F
isobs.z 0˙=0F
Assertion obsip BOBasisWPBQBP,˙Q=ifP=Q1˙0˙

Proof

Step Hyp Ref Expression
1 isobs.v V=BaseW
2 isobs.h ,˙=𝑖W
3 isobs.f F=ScalarW
4 isobs.u 1˙=1F
5 isobs.z 0˙=0F
6 eqid ocvW=ocvW
7 eqid 0W=0W
8 1 2 3 4 5 6 7 isobs BOBasisWWPreHilBVxByBx,˙y=ifx=y1˙0˙ocvWB=0W
9 8 simp3bi BOBasisWxByBx,˙y=ifx=y1˙0˙ocvWB=0W
10 9 simpld BOBasisWxByBx,˙y=ifx=y1˙0˙
11 oveq1 x=Px,˙y=P,˙y
12 eqeq1 x=Px=yP=y
13 12 ifbid x=Pifx=y1˙0˙=ifP=y1˙0˙
14 11 13 eqeq12d x=Px,˙y=ifx=y1˙0˙P,˙y=ifP=y1˙0˙
15 oveq2 y=QP,˙y=P,˙Q
16 eqeq2 y=QP=yP=Q
17 16 ifbid y=QifP=y1˙0˙=ifP=Q1˙0˙
18 15 17 eqeq12d y=QP,˙y=ifP=y1˙0˙P,˙Q=ifP=Q1˙0˙
19 14 18 rspc2v PBQBxByBx,˙y=ifx=y1˙0˙P,˙Q=ifP=Q1˙0˙
20 10 19 syl5com BOBasisWPBQBP,˙Q=ifP=Q1˙0˙
21 20 3impib BOBasisWPBQBP,˙Q=ifP=Q1˙0˙