Metamath Proof Explorer


Theorem oduglb

Description: Greatest lower bounds in a dual order are least upper bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduglb.d D=ODualO
oduglb.l U=lubO
Assertion oduglb OVU=glbD

Proof

Step Hyp Ref Expression
1 oduglb.d D=ODualO
2 oduglb.l U=lubO
3 vex bV
4 vex cV
5 3 4 brcnv bO-1ccOb
6 5 ralbii cabO-1ccacOb
7 vex dV
8 7 4 brcnv dO-1ccOd
9 8 ralbii cadO-1ccacOd
10 7 3 brcnv dO-1bbOd
11 9 10 imbi12i cadO-1cdO-1bcacOdbOd
12 11 ralbii dBaseOcadO-1cdO-1bdBaseOcacOdbOd
13 6 12 anbi12i cabO-1cdBaseOcadO-1cdO-1bcacObdBaseOcacOdbOd
14 13 a1i bBaseOcabO-1cdBaseOcadO-1cdO-1bcacObdBaseOcacOdbOd
15 14 riotabiia ιbBaseO|cabO-1cdBaseOcadO-1cdO-1b=ιbBaseO|cacObdBaseOcacOdbOd
16 15 mpteq2i a𝒫BaseOιbBaseO|cabO-1cdBaseOcadO-1cdO-1b=a𝒫BaseOιbBaseO|cacObdBaseOcacOdbOd
17 13 reubii ∃!bBaseOcabO-1cdBaseOcadO-1cdO-1b∃!bBaseOcacObdBaseOcacOdbOd
18 17 abbii a|∃!bBaseOcabO-1cdBaseOcadO-1cdO-1b=a|∃!bBaseOcacObdBaseOcacOdbOd
19 16 18 reseq12i a𝒫BaseOιbBaseO|cabO-1cdBaseOcadO-1cdO-1ba|∃!bBaseOcabO-1cdBaseOcadO-1cdO-1b=a𝒫BaseOιbBaseO|cacObdBaseOcacOdbOda|∃!bBaseOcacObdBaseOcacOdbOd
20 19 eqcomi a𝒫BaseOιbBaseO|cacObdBaseOcacOdbOda|∃!bBaseOcacObdBaseOcacOdbOd=a𝒫BaseOιbBaseO|cabO-1cdBaseOcadO-1cdO-1ba|∃!bBaseOcabO-1cdBaseOcadO-1cdO-1b
21 eqid BaseO=BaseO
22 eqid O=O
23 eqid lubO=lubO
24 biid cacObdBaseOcacOdbOdcacObdBaseOcacOdbOd
25 id OVOV
26 21 22 23 24 25 lubfval OVlubO=a𝒫BaseOιbBaseO|cacObdBaseOcacOdbOda|∃!bBaseOcacObdBaseOcacOdbOd
27 1 fvexi DV
28 1 21 odubas BaseO=BaseD
29 1 22 oduleval O-1=D
30 eqid glbD=glbD
31 biid cabO-1cdBaseOcadO-1cdO-1bcabO-1cdBaseOcadO-1cdO-1b
32 id DVDV
33 28 29 30 31 32 glbfval DVglbD=a𝒫BaseOιbBaseO|cabO-1cdBaseOcadO-1cdO-1ba|∃!bBaseOcabO-1cdBaseOcadO-1cdO-1b
34 27 33 mp1i OVglbD=a𝒫BaseOιbBaseO|cabO-1cdBaseOcadO-1cdO-1ba|∃!bBaseOcabO-1cdBaseOcadO-1cdO-1b
35 20 26 34 3eqtr4a OVlubO=glbD
36 2 35 eqtrid OVU=glbD