Description: Greatest lower bounds in a dual order are least upper bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oduglb.d | |
|
oduglb.l | |
||
Assertion | oduglb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oduglb.d | |
|
2 | oduglb.l | |
|
3 | vex | |
|
4 | vex | |
|
5 | 3 4 | brcnv | |
6 | 5 | ralbii | |
7 | vex | |
|
8 | 7 4 | brcnv | |
9 | 8 | ralbii | |
10 | 7 3 | brcnv | |
11 | 9 10 | imbi12i | |
12 | 11 | ralbii | |
13 | 6 12 | anbi12i | |
14 | 13 | a1i | |
15 | 14 | riotabiia | |
16 | 15 | mpteq2i | |
17 | 13 | reubii | |
18 | 17 | abbii | |
19 | 16 18 | reseq12i | |
20 | 19 | eqcomi | |
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | biid | |
|
25 | id | |
|
26 | 21 22 23 24 25 | lubfval | |
27 | 1 | fvexi | |
28 | 1 21 | odubas | |
29 | 1 22 | oduleval | |
30 | eqid | |
|
31 | biid | |
|
32 | id | |
|
33 | 28 29 30 31 32 | glbfval | |
34 | 27 33 | mp1i | |
35 | 20 26 34 | 3eqtr4a | |
36 | 2 35 | eqtrid | |