Metamath Proof Explorer


Theorem oe1

Description: Ordinal exponentiation with an exponent of 1. Lemma 2.16 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)

Ref Expression
Assertion oe1 AOnA𝑜1𝑜=A

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 1 oveq2i A𝑜1𝑜=A𝑜suc
3 peano1 ω
4 onesuc AOnωA𝑜suc=A𝑜𝑜A
5 3 4 mpan2 AOnA𝑜suc=A𝑜𝑜A
6 2 5 eqtrid AOnA𝑜1𝑜=A𝑜𝑜A
7 oe0 AOnA𝑜=1𝑜
8 7 oveq1d AOnA𝑜𝑜A=1𝑜𝑜A
9 om1r AOn1𝑜𝑜A=A
10 6 8 9 3eqtrd AOnA𝑜1𝑜=A