| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
eqeq1d |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
eqeq1d |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
|
1on |
|
| 10 |
|
oe0 |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
|
oesuc |
|
| 13 |
9 12
|
mpan |
|
| 14 |
|
oveq1 |
|
| 15 |
|
om1 |
|
| 16 |
9 15
|
ax-mp |
|
| 17 |
14 16
|
eqtrdi |
|
| 18 |
13 17
|
sylan9eq |
|
| 19 |
18
|
ex |
|
| 20 |
|
iuneq2 |
|
| 21 |
|
vex |
|
| 22 |
|
0lt1o |
|
| 23 |
|
oelim |
|
| 24 |
22 23
|
mpan2 |
|
| 25 |
9 24
|
mpan |
|
| 26 |
21 25
|
mpan |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
|
0ellim |
|
| 29 |
|
ne0i |
|
| 30 |
|
iunconst |
|
| 31 |
28 29 30
|
3syl |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
27 32
|
bitr4d |
|
| 34 |
20 33
|
imbitrrid |
|
| 35 |
2 4 6 8 11 19 34
|
tfinds |
|