Metamath Proof Explorer


Theorem oenord1ex

Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion oenord1ex ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ω

Proof

Step Hyp Ref Expression
1 2oex 2𝑜V
2 1 tpid3 2𝑜1𝑜2𝑜
3 df3o2 3𝑜=1𝑜2𝑜
4 2 3 eleqtrri 2𝑜3𝑜
5 ordom Ordω
6 ordirr Ordω¬ωω
7 2onn 2𝑜ω
8 1oex 1𝑜V
9 8 prid2 1𝑜1𝑜
10 df2o3 2𝑜=1𝑜
11 9 10 eleqtrri 1𝑜2𝑜
12 nnoeomeqom 2𝑜ω1𝑜2𝑜2𝑜𝑜ω=ω
13 7 11 12 mp2an 2𝑜𝑜ω=ω
14 3onn 3𝑜ω
15 8 tpid2 1𝑜1𝑜2𝑜
16 15 3 eleqtrri 1𝑜3𝑜
17 nnoeomeqom 3𝑜ω1𝑜3𝑜3𝑜𝑜ω=ω
18 14 16 17 mp2an 3𝑜𝑜ω=ω
19 13 18 eleq12i 2𝑜𝑜ω3𝑜𝑜ωωω
20 6 19 sylnibr Ordω¬2𝑜𝑜ω3𝑜𝑜ω
21 5 20 ax-mp ¬2𝑜𝑜ω3𝑜𝑜ω
22 4 21 2th 2𝑜3𝑜¬2𝑜𝑜ω3𝑜𝑜ω
23 xor3 ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ω2𝑜3𝑜¬2𝑜𝑜ω3𝑜𝑜ω
24 22 23 mpbir ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ω