Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of Schloeder p. 11. (Contributed by RP, 30-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oenord1ex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2oex | |
|
2 | 1 | tpid3 | |
3 | df3o2 | |
|
4 | 2 3 | eleqtrri | |
5 | ordom | |
|
6 | ordirr | |
|
7 | 2onn | |
|
8 | 1oex | |
|
9 | 8 | prid2 | |
10 | df2o3 | |
|
11 | 9 10 | eleqtrri | |
12 | nnoeomeqom | |
|
13 | 7 11 12 | mp2an | |
14 | 3onn | |
|
15 | 8 | tpid2 | |
16 | 15 3 | eleqtrri | |
17 | nnoeomeqom | |
|
18 | 14 16 17 | mp2an | |
19 | 13 18 | eleq12i | |
20 | 6 19 | sylnibr | |
21 | 5 20 | ax-mp | |
22 | 4 21 | 2th | |
23 | xor3 | |
|
24 | 22 23 | mpbir | |