Metamath Proof Explorer


Theorem ofcf

Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses ofcf.1 φ x S y T x R y U
ofcf.2 φ F : A S
ofcf.4 φ A V
ofcf.5 φ C T
Assertion ofcf φ F fc R C : A U

Proof

Step Hyp Ref Expression
1 ofcf.1 φ x S y T x R y U
2 ofcf.2 φ F : A S
3 ofcf.4 φ A V
4 ofcf.5 φ C T
5 2 ffnd φ F Fn A
6 eqidd φ z A F z = F z
7 5 3 4 6 ofcfval φ F fc R C = z A F z R C
8 2 ffvelrnda φ z A F z S
9 4 adantr φ z A C T
10 1 ralrimivva φ x S y T x R y U
11 10 adantr φ z A x S y T x R y U
12 ovrspc2v F z S C T x S y T x R y U F z R C U
13 8 9 11 12 syl21anc φ z A F z R C U
14 7 13 fmpt3d φ F fc R C : A U