Metamath Proof Explorer


Theorem offveq

Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses offveq.1 φAV
offveq.2 φFFnA
offveq.3 φGFnA
offveq.4 φHFnA
offveq.5 φxAFx=B
offveq.6 φxAGx=C
offveq.7 φxABRC=Hx
Assertion offveq φFRfG=H

Proof

Step Hyp Ref Expression
1 offveq.1 φAV
2 offveq.2 φFFnA
3 offveq.3 φGFnA
4 offveq.4 φHFnA
5 offveq.5 φxAFx=B
6 offveq.6 φxAGx=C
7 offveq.7 φxABRC=Hx
8 inidm AA=A
9 2 3 1 1 8 offn φFRfGFnA
10 2 3 1 1 8 5 6 ofval φxAFRfGx=BRC
11 10 7 eqtrd φxAFRfGx=Hx
12 9 4 11 eqfnfvd φFRfG=H