Metamath Proof Explorer


Theorem oldmj3

Description: De Morgan's law for join in an ortholattice. ( chdmj3 analog.) (Contributed by NM, 7-Nov-2011)

Ref Expression
Hypotheses oldmm1.b B=BaseK
oldmm1.j ˙=joinK
oldmm1.m ˙=meetK
oldmm1.o ˙=ocK
Assertion oldmj3 KOLXBYB˙X˙˙Y=˙X˙Y

Proof

Step Hyp Ref Expression
1 oldmm1.b B=BaseK
2 oldmm1.j ˙=joinK
3 oldmm1.m ˙=meetK
4 oldmm1.o ˙=ocK
5 olop KOLKOP
6 5 3ad2ant1 KOLXBYBKOP
7 simp3 KOLXBYBYB
8 1 4 opoccl KOPYB˙YB
9 6 7 8 syl2anc KOLXBYB˙YB
10 1 2 3 4 oldmj1 KOLXB˙YB˙X˙˙Y=˙X˙˙˙Y
11 9 10 syld3an3 KOLXBYB˙X˙˙Y=˙X˙˙˙Y
12 1 4 opococ KOPYB˙˙Y=Y
13 6 7 12 syl2anc KOLXBYB˙˙Y=Y
14 13 oveq2d KOLXBYB˙X˙˙˙Y=˙X˙Y
15 11 14 eqtrd KOLXBYB˙X˙˙Y=˙X˙Y