Metamath Proof Explorer


Theorem olm02

Description: Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses olm0.b B=BaseK
olm0.m ˙=meetK
olm0.z 0˙=0.K
Assertion olm02 KOLXB0˙˙X=0˙

Proof

Step Hyp Ref Expression
1 olm0.b B=BaseK
2 olm0.m ˙=meetK
3 olm0.z 0˙=0.K
4 ollat KOLKLat
5 4 adantr KOLXBKLat
6 simpr KOLXBXB
7 olop KOLKOP
8 7 adantr KOLXBKOP
9 1 3 op0cl KOP0˙B
10 8 9 syl KOLXB0˙B
11 1 2 latmcom KLatXB0˙BX˙0˙=0˙˙X
12 5 6 10 11 syl3anc KOLXBX˙0˙=0˙˙X
13 1 2 3 olm01 KOLXBX˙0˙=0˙
14 12 13 eqtr3d KOLXB0˙˙X=0˙