Metamath Proof Explorer


Theorem om1opn

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O=JΩ1Y
om1bas.j φJTopOnX
om1bas.y φYX
om1opn.k K=TopOpenO
om1opn.b φB=BaseO
Assertion om1opn φK=J^koII𝑡B

Proof

Step Hyp Ref Expression
1 om1bas.o O=JΩ1Y
2 om1bas.j φJTopOnX
3 om1bas.y φYX
4 om1opn.k K=TopOpenO
5 om1opn.b φB=BaseO
6 eqid BaseO=BaseO
7 eqid TopSetO=TopSetO
8 6 7 topnval TopSetO𝑡BaseO=TopOpenO
9 4 8 eqtr4i K=TopSetO𝑡BaseO
10 1 2 3 om1tset φJ^koII=TopSetO
11 10 5 oveq12d φJ^koII𝑡B=TopSetO𝑡BaseO
12 9 11 eqtr4id φK=J^koII𝑡B