Database
BASIC TOPOLOGY
Metric spaces
The fundamental group
om1opn
Next ⟩
pi1val
Metamath Proof Explorer
Ascii
Unicode
Theorem
om1opn
Description:
The topology of the loop space.
(Contributed by
Mario Carneiro
, 10-Jul-2015)
Ref
Expression
Hypotheses
om1bas.o
⊢
O
=
J
Ω
1
Y
om1bas.j
⊢
φ
→
J
∈
TopOn
⁡
X
om1bas.y
⊢
φ
→
Y
∈
X
om1opn.k
⊢
K
=
TopOpen
⁡
O
om1opn.b
⊢
φ
→
B
=
Base
O
Assertion
om1opn
⊢
φ
→
K
=
J
^
ko
II
↾
𝑡
B
Proof
Step
Hyp
Ref
Expression
1
om1bas.o
⊢
O
=
J
Ω
1
Y
2
om1bas.j
⊢
φ
→
J
∈
TopOn
⁡
X
3
om1bas.y
⊢
φ
→
Y
∈
X
4
om1opn.k
⊢
K
=
TopOpen
⁡
O
5
om1opn.b
⊢
φ
→
B
=
Base
O
6
eqid
⊢
Base
O
=
Base
O
7
eqid
⊢
TopSet
⁡
O
=
TopSet
⁡
O
8
6
7
topnval
⊢
TopSet
⁡
O
↾
𝑡
Base
O
=
TopOpen
⁡
O
9
4
8
eqtr4i
⊢
K
=
TopSet
⁡
O
↾
𝑡
Base
O
10
1
2
3
om1tset
⊢
φ
→
J
^
ko
II
=
TopSet
⁡
O
11
10
5
oveq12d
⊢
φ
→
J
^
ko
II
↾
𝑡
B
=
TopSet
⁡
O
↾
𝑡
Base
O
12
9
11
eqtr4id
⊢
φ
→
K
=
J
^
ko
II
↾
𝑡
B