Metamath Proof Explorer


Theorem om1opn

Description: The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1bas.o O = J Ω 1 Y
om1bas.j φ J TopOn X
om1bas.y φ Y X
om1opn.k K = TopOpen O
om1opn.b φ B = Base O
Assertion om1opn φ K = J ^ ko II 𝑡 B

Proof

Step Hyp Ref Expression
1 om1bas.o O = J Ω 1 Y
2 om1bas.j φ J TopOn X
3 om1bas.y φ Y X
4 om1opn.k K = TopOpen O
5 om1opn.b φ B = Base O
6 eqid Base O = Base O
7 eqid TopSet O = TopSet O
8 6 7 topnval TopSet O 𝑡 Base O = TopOpen O
9 4 8 eqtr4i K = TopSet O 𝑡 Base O
10 1 2 3 om1tset φ J ^ ko II = TopSet O
11 10 5 oveq12d φ J ^ ko II 𝑡 B = TopSet O 𝑡 Base O
12 9 11 eqtr4id φ K = J ^ ko II 𝑡 B