Metamath Proof Explorer


Theorem om2

Description: Two ways to double an ordinal. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion om2 AOnA+𝑜A=A𝑜2𝑜

Proof

Step Hyp Ref Expression
1 df-2o 2𝑜=suc1𝑜
2 1 oveq2i A𝑜2𝑜=A𝑜suc1𝑜
3 1on 1𝑜On
4 omsuc AOn1𝑜OnA𝑜suc1𝑜=A𝑜1𝑜+𝑜A
5 3 4 mpan2 AOnA𝑜suc1𝑜=A𝑜1𝑜+𝑜A
6 om1 AOnA𝑜1𝑜=A
7 6 oveq1d AOnA𝑜1𝑜+𝑜A=A+𝑜A
8 5 7 eqtrd AOnA𝑜suc1𝑜=A+𝑜A
9 2 8 eqtr2id AOnA+𝑜A=A𝑜2𝑜