Metamath Proof Explorer


Theorem omge2

Description: Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of Schloeder p. 9. See omword2 . (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion omge2 AOnBOnABA𝑜B

Proof

Step Hyp Ref Expression
1 ancom AOnBOnBOnAOn
2 1 anbi1i AOnBOnABOnAOnA
3 df-3an AOnBOnAAOnBOnA
4 on0eln0 AOnAA
5 4 adantl BOnAOnAA
6 5 pm5.32i BOnAOnABOnAOnA
7 2 3 6 3bitr4i AOnBOnABOnAOnA
8 omword2 BOnAOnABA𝑜B
9 7 8 sylbi AOnBOnABA𝑜B