Metamath Proof Explorer


Theorem omllaw

Description: The orthomodular law. (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses omllaw.b B=BaseK
omllaw.l ˙=K
omllaw.j ˙=joinK
omllaw.m ˙=meetK
omllaw.o ˙=ocK
Assertion omllaw KOMLXBYBX˙YY=X˙Y˙˙X

Proof

Step Hyp Ref Expression
1 omllaw.b B=BaseK
2 omllaw.l ˙=K
3 omllaw.j ˙=joinK
4 omllaw.m ˙=meetK
5 omllaw.o ˙=ocK
6 1 2 3 4 5 isoml KOMLKOLxByBx˙yy=x˙y˙˙x
7 6 simprbi KOMLxByBx˙yy=x˙y˙˙x
8 breq1 x=Xx˙yX˙y
9 id x=Xx=X
10 fveq2 x=X˙x=˙X
11 10 oveq2d x=Xy˙˙x=y˙˙X
12 9 11 oveq12d x=Xx˙y˙˙x=X˙y˙˙X
13 12 eqeq2d x=Xy=x˙y˙˙xy=X˙y˙˙X
14 8 13 imbi12d x=Xx˙yy=x˙y˙˙xX˙yy=X˙y˙˙X
15 breq2 y=YX˙yX˙Y
16 id y=Yy=Y
17 oveq1 y=Yy˙˙X=Y˙˙X
18 17 oveq2d y=YX˙y˙˙X=X˙Y˙˙X
19 16 18 eqeq12d y=Yy=X˙y˙˙XY=X˙Y˙˙X
20 15 19 imbi12d y=YX˙yy=X˙y˙˙XX˙YY=X˙Y˙˙X
21 14 20 rspc2v XBYBxByBx˙yy=x˙y˙˙xX˙YY=X˙Y˙˙X
22 7 21 syl5com KOMLXBYBX˙YY=X˙Y˙˙X
23 22 3impib KOMLXBYBX˙YY=X˙Y˙˙X