Metamath Proof Explorer


Theorem omndaddr

Description: In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses omndadd.0 B=BaseM
omndadd.1 ˙=M
omndadd.2 +˙=+M
Assertion omndaddr opp𝑔MoMndXBYBZBX˙YZ+˙X˙Z+˙Y

Proof

Step Hyp Ref Expression
1 omndadd.0 B=BaseM
2 omndadd.1 ˙=M
3 omndadd.2 +˙=+M
4 eqid opp𝑔M=opp𝑔M
5 4 1 oppgbas B=Baseopp𝑔M
6 4 2 oppgle ˙=opp𝑔M
7 eqid +opp𝑔M=+opp𝑔M
8 5 6 7 omndadd opp𝑔MoMndXBYBZBX˙YX+opp𝑔MZ˙Y+opp𝑔MZ
9 3 4 7 oppgplus X+opp𝑔MZ=Z+˙X
10 3 4 7 oppgplus Y+opp𝑔MZ=Z+˙Y
11 8 9 10 3brtr3g opp𝑔MoMndXBYBZBX˙YZ+˙X˙Z+˙Y