Metamath Proof Explorer


Theorem omxpen

Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of TakeutiZaring p. 89. (Contributed by Mario Carneiro, 3-Mar-2013)

Ref Expression
Assertion omxpen AOnBOnA𝑜BA×B

Proof

Step Hyp Ref Expression
1 xpcomeng AOnBOnA×BB×A
2 xpexg BOnAOnB×AV
3 2 ancoms AOnBOnB×AV
4 omcl AOnBOnA𝑜BOn
5 eqid xB,yAA𝑜x+𝑜y=xB,yAA𝑜x+𝑜y
6 5 omxpenlem AOnBOnxB,yAA𝑜x+𝑜y:B×A1-1 ontoA𝑜B
7 f1oen2g B×AVA𝑜BOnxB,yAA𝑜x+𝑜y:B×A1-1 ontoA𝑜BB×AA𝑜B
8 3 4 6 7 syl3anc AOnBOnB×AA𝑜B
9 entr A×BB×AB×AA𝑜BA×BA𝑜B
10 1 8 9 syl2anc AOnBOnA×BA𝑜B
11 10 ensymd AOnBOnA𝑜BA×B