Metamath Proof Explorer


Theorem oneqmin

Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)

Ref Expression
Assertion oneqmin BOnBA=BABxA¬xB

Proof

Step Hyp Ref Expression
1 onint BOnBBB
2 eleq1 A=BABBB
3 1 2 syl5ibrcom BOnBA=BAB
4 eleq2 A=BxAxB
5 4 biimpd A=BxAxB
6 onnmin BOnxB¬xB
7 6 ex BOnxB¬xB
8 7 con2d BOnxB¬xB
9 5 8 syl9r BOnA=BxA¬xB
10 9 ralrimdv BOnA=BxA¬xB
11 10 adantr BOnBA=BxA¬xB
12 3 11 jcad BOnBA=BABxA¬xB
13 oneqmini BOnABxA¬xBA=B
14 13 adantr BOnBABxA¬xBA=B
15 12 14 impbid BOnBA=BABxA¬xB