Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | oneqmini | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint | |
|
2 | ssel | |
|
3 | ssel | |
|
4 | 2 3 | anim12d | |
5 | ontri1 | |
|
6 | 4 5 | syl6 | |
7 | 6 | expdimp | |
8 | 7 | pm5.74d | |
9 | con2b | |
|
10 | 8 9 | bitrdi | |
11 | 10 | ralbidv2 | |
12 | 1 11 | bitrid | |
13 | 12 | biimprd | |
14 | 13 | expimpd | |
15 | intss1 | |
|
16 | 15 | a1i | |
17 | 16 | adantrd | |
18 | 14 17 | jcad | |
19 | eqss | |
|
20 | 18 19 | syl6ibr | |