Metamath Proof Explorer


Theorem oneqmini

Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)

Ref Expression
Assertion oneqmini BOnABxA¬xBA=B

Proof

Step Hyp Ref Expression
1 ssint ABxBAx
2 ssel BOnABAOn
3 ssel BOnxBxOn
4 2 3 anim12d BOnABxBAOnxOn
5 ontri1 AOnxOnAx¬xA
6 4 5 syl6 BOnABxBAx¬xA
7 6 expdimp BOnABxBAx¬xA
8 7 pm5.74d BOnABxBAxxB¬xA
9 con2b xB¬xAxA¬xB
10 8 9 bitrdi BOnABxBAxxA¬xB
11 10 ralbidv2 BOnABxBAxxA¬xB
12 1 11 bitrid BOnABABxA¬xB
13 12 biimprd BOnABxA¬xBAB
14 13 expimpd BOnABxA¬xBAB
15 intss1 ABBA
16 15 a1i BOnABBA
17 16 adantrd BOnABxA¬xBBA
18 14 17 jcad BOnABxA¬xBABBA
19 eqss A=BABBA
20 18 19 syl6ibr BOnABxA¬xBA=B