| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssint |
⊢ ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ) |
| 2 |
|
ssel |
⊢ ( 𝐵 ⊆ On → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) |
| 3 |
|
ssel |
⊢ ( 𝐵 ⊆ On → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) |
| 4 |
2 3
|
anim12d |
⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ) ) |
| 5 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 6 |
4 5
|
syl6 |
⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 7 |
6
|
expdimp |
⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 8 |
7
|
pm5.74d |
⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 9 |
|
con2b |
⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 10 |
8 9
|
bitrdi |
⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 11 |
10
|
ralbidv2 |
⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 |
1 11
|
bitrid |
⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) |
| 13 |
12
|
biimprd |
⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐴 ⊆ ∩ 𝐵 ) ) |
| 14 |
13
|
expimpd |
⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 ⊆ ∩ 𝐵 ) ) |
| 15 |
|
intss1 |
⊢ ( 𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴 ) |
| 16 |
15
|
a1i |
⊢ ( 𝐵 ⊆ On → ( 𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴 ) ) |
| 17 |
16
|
adantrd |
⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → ∩ 𝐵 ⊆ 𝐴 ) ) |
| 18 |
14 17
|
jcad |
⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → ( 𝐴 ⊆ ∩ 𝐵 ∧ ∩ 𝐵 ⊆ 𝐴 ) ) ) |
| 19 |
|
eqss |
⊢ ( 𝐴 = ∩ 𝐵 ↔ ( 𝐴 ⊆ ∩ 𝐵 ∧ ∩ 𝐵 ⊆ 𝐴 ) ) |
| 20 |
18 19
|
imbitrrdi |
⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 = ∩ 𝐵 ) ) |