Metamath Proof Explorer


Theorem onintopssconn

Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015)

Ref Expression
Assertion onintopssconn OnTopConn

Proof

Step Hyp Ref Expression
1 elin xOnTopxOnxTop
2 eloni xOnOrdx
3 ordtopconn OrdxxTopxConn
4 2 3 syl xOnxTopxConn
5 4 biimpa xOnxTopxConn
6 1 5 sylbi xOnTopxConn
7 6 ssriv OnTopConn