Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onmindif2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | |
|
2 | onnmin | |
|
3 | 2 | adantlr | |
4 | oninton | |
|
5 | ssel2 | |
|
6 | 5 | adantlr | |
7 | ontri1 | |
|
8 | onsseleq | |
|
9 | 7 8 | bitr3d | |
10 | 4 6 9 | syl2an2r | |
11 | 3 10 | mpbid | |
12 | 11 | ord | |
13 | eqcom | |
|
14 | 12 13 | imbitrdi | |
15 | 14 | necon1ad | |
16 | 15 | expimpd | |
17 | 1 16 | biimtrid | |
18 | 17 | ralrimiv | |
19 | intex | |
|
20 | elintg | |
|
21 | 19 20 | sylbi | |
22 | 21 | adantl | |
23 | 18 22 | mpbird | |