Metamath Proof Explorer


Theorem onmindif2

Description: The minimum of a class of ordinal numbers is less than the minimum of that class with its minimum removed. (Contributed by NM, 20-Nov-2003)

Ref Expression
Assertion onmindif2 AOnAAAA

Proof

Step Hyp Ref Expression
1 eldifsn xAAxAxA
2 onnmin AOnxA¬xA
3 2 adantlr AOnAxA¬xA
4 oninton AOnAAOn
5 ssel2 AOnxAxOn
6 5 adantlr AOnAxAxOn
7 ontri1 AOnxOnAx¬xA
8 onsseleq AOnxOnAxAxA=x
9 7 8 bitr3d AOnxOn¬xAAxA=x
10 4 6 9 syl2an2r AOnAxA¬xAAxA=x
11 3 10 mpbid AOnAxAAxA=x
12 11 ord AOnAxA¬AxA=x
13 eqcom A=xx=A
14 12 13 imbitrdi AOnAxA¬Axx=A
15 14 necon1ad AOnAxAxAAx
16 15 expimpd AOnAxAxAAx
17 1 16 biimtrid AOnAxAAAx
18 17 ralrimiv AOnAxAAAx
19 intex AAV
20 elintg AVAAAxAAAx
21 19 20 sylbi AAAAxAAAx
22 21 adantl AOnAAAAxAAAx
23 18 22 mpbird AOnAAAA