Metamath Proof Explorer


Theorem onminesb

Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)

Ref Expression
Assertion onminesb x On φ [˙ x On | φ / x]˙ φ

Proof

Step Hyp Ref Expression
1 rabn0 x On | φ x On φ
2 ssrab2 x On | φ On
3 onint x On | φ On x On | φ x On | φ x On | φ
4 2 3 mpan x On | φ x On | φ x On | φ
5 1 4 sylbir x On φ x On | φ x On | φ
6 nfcv _ x On
7 6 elrabsf x On | φ x On | φ x On | φ On [˙ x On | φ / x]˙ φ
8 7 simprbi x On | φ x On | φ [˙ x On | φ / x]˙ φ
9 5 8 syl x On φ [˙ x On | φ / x]˙ φ