Metamath Proof Explorer


Theorem onminesb

Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)

Ref Expression
Assertion onminesb xOnφ[˙xOn|φ/x]˙φ

Proof

Step Hyp Ref Expression
1 rabn0 xOn|φxOnφ
2 ssrab2 xOn|φOn
3 onint xOn|φOnxOn|φxOn|φxOn|φ
4 2 3 mpan xOn|φxOn|φxOn|φ
5 1 4 sylbir xOnφxOn|φxOn|φ
6 nfcv _xOn
7 6 elrabsf xOn|φxOn|φxOn|φOn[˙xOn|φ/x]˙φ
8 7 simprbi xOn|φxOn|φ[˙xOn|φ/x]˙φ
9 5 8 syl xOnφ[˙xOn|φ/x]˙φ