Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses explicit substitution. Theorem Schema 62 of Suppes p. 228. (Contributed by NM, 29-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onminesb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 | |
|
2 | ssrab2 | |
|
3 | onint | |
|
4 | 2 3 | mpan | |
5 | 1 4 | sylbir | |
6 | nfcv | |
|
7 | 6 | elrabsf | |
8 | 7 | simprbi | |
9 | 5 8 | syl | |