Metamath Proof Explorer


Theorem onsis

Description: Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Hypotheses onsis.1 x = y φ ψ
onsis.2 x = A φ χ
onsis.3 x On s y On s y < s x ψ φ
Assertion onsis A On s χ

Proof

Step Hyp Ref Expression
1 onsis.1 x = y φ ψ
2 onsis.2 x = A φ χ
3 onsis.3 x On s y On s y < s x ψ φ
4 onswe < s We On s
5 onsse < s Se On s
6 vex y V
7 6 elpred x V y Pred < s On s x y On s y < s x
8 7 elv y Pred < s On s x y On s y < s x
9 8 imbi1i y Pred < s On s x ψ y On s y < s x ψ
10 impexp y On s y < s x ψ y On s y < s x ψ
11 9 10 bitri y Pred < s On s x ψ y On s y < s x ψ
12 11 ralbii2 y Pred < s On s x ψ y On s y < s x ψ
13 12 3 biimtrid x On s y Pred < s On s x ψ φ
14 4 5 1 2 13 wfis3 A On s χ