Metamath Proof Explorer


Theorem onsucrn

Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Hypothesis onsucrn.f F=xOnsucx
Assertion onsucrn ranF=aOn|bOna=sucb

Proof

Step Hyp Ref Expression
1 onsucrn.f F=xOnsucx
2 simpr xOna=sucxa=sucx
3 onsuc xOnsucxOn
4 3 adantr xOna=sucxsucxOn
5 2 4 eqeltrd xOna=sucxaOn
6 5 rexlimiva xOna=sucxaOn
7 6 pm4.71ri xOna=sucxaOnxOna=sucx
8 suceq x=bsucx=sucb
9 8 eqeq2d x=ba=sucxa=sucb
10 9 cbvrexvw xOna=sucxbOna=sucb
11 10 anbi2i aOnxOna=sucxaOnbOna=sucb
12 7 11 bitri xOna=sucxaOnbOna=sucb
13 12 abbii a|xOna=sucx=a|aOnbOna=sucb
14 1 rnmpt ranF=a|xOna=sucx
15 df-rab aOn|bOna=sucb=a|aOnbOna=sucb
16 13 14 15 3eqtr4i ranF=aOn|bOna=sucb