Metamath Proof Explorer


Theorem onsupneqmaxlim0

Description: If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupneqmaxlim0 AOnAAA=A

Proof

Step Hyp Ref Expression
1 uniss AAAA
2 ssorduni AOnOrdA
3 orduniss OrdAAA
4 2 3 syl AOnAA
5 4 biantrud AOnAAAAAA
6 eqss A=AAAAA
7 5 6 bitr4di AOnAAA=A
8 1 7 imbitrid AOnAAA=A