Description: Ordinal numbers and ordered pairs are disjoint collections. This theorem can be used if we want to extend a set of ordinal numbers or ordered pairs with disjoint elements. See also snsn0non . (Contributed by NM, 1-Jun-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onxpdisj |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj | ||
| 2 | on0eqel | ||
| 3 | 0nelxp | ||
| 4 | eleq1 | ||
| 5 | 3 4 | mtbiri | |
| 6 | 0nelelxp | ||
| 7 | 6 | con2i | |
| 8 | 5 7 | jaoi | |
| 9 | 2 8 | syl | |
| 10 | 1 9 | mprgbir |