Metamath Proof Explorer


Theorem onzsl

Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion onzsl AOnA=xOnA=sucxAVLimA

Proof

Step Hyp Ref Expression
1 elex AOnAV
2 eloni AOnOrdA
3 ordzsl OrdAA=xOnA=sucxLimA
4 3mix1 A=A=xOnA=sucxAVLimA
5 4 adantl AVA=A=xOnA=sucxAVLimA
6 3mix2 xOnA=sucxA=xOnA=sucxAVLimA
7 6 adantl AVxOnA=sucxA=xOnA=sucxAVLimA
8 3mix3 AVLimAA=xOnA=sucxAVLimA
9 5 7 8 3jaodan AVA=xOnA=sucxLimAA=xOnA=sucxAVLimA
10 3 9 sylan2b AVOrdAA=xOnA=sucxAVLimA
11 1 2 10 syl2anc AOnA=xOnA=sucxAVLimA
12 0elon On
13 eleq1 A=AOnOn
14 12 13 mpbiri A=AOn
15 onsuc xOnsucxOn
16 eleq1 A=sucxAOnsucxOn
17 15 16 syl5ibrcom xOnA=sucxAOn
18 17 rexlimiv xOnA=sucxAOn
19 limelon AVLimAAOn
20 14 18 19 3jaoi A=xOnA=sucxAVLimAAOn
21 11 20 impbii AOnA=xOnA=sucxAVLimA