Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | onzsl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | eloni | |
|
3 | ordzsl | |
|
4 | 3mix1 | |
|
5 | 4 | adantl | |
6 | 3mix2 | |
|
7 | 6 | adantl | |
8 | 3mix3 | |
|
9 | 5 7 8 | 3jaodan | |
10 | 3 9 | sylan2b | |
11 | 1 2 10 | syl2anc | |
12 | 0elon | |
|
13 | eleq1 | |
|
14 | 12 13 | mpbiri | |
15 | onsuc | |
|
16 | eleq1 | |
|
17 | 15 16 | syl5ibrcom | |
18 | 17 | rexlimiv | |
19 | limelon | |
|
20 | 14 18 19 | 3jaoi | |
21 | 11 20 | impbii | |