Metamath Proof Explorer


Theorem opabiotafun

Description: Define a function whose value is "the unique y such that ph ( x , y ) ". (Contributed by NM, 19-May-2015)

Ref Expression
Hypothesis opabiota.1 F=xy|y|φ=y
Assertion opabiotafun FunF

Proof

Step Hyp Ref Expression
1 opabiota.1 F=xy|y|φ=y
2 funopab Funxy|y|φ=yx*yy|φ=y
3 mo2icl zy|φ=zz=y|φ*zy|φ=z
4 unieq y|φ=zy|φ=z
5 unisnv z=z
6 4 5 eqtr2di y|φ=zz=y|φ
7 3 6 mpg *zy|φ=z
8 nfv zy|φ=y
9 nfab1 _yy|φ
10 9 nfeq1 yy|φ=z
11 sneq y=zy=z
12 11 eqeq2d y=zy|φ=yy|φ=z
13 8 10 12 cbvmow *yy|φ=y*zy|φ=z
14 7 13 mpbir *yy|φ=y
15 2 14 mpgbir Funxy|y|φ=y
16 1 funeqi FunFFunxy|y|φ=y
17 15 16 mpbir FunF