Metamath Proof Explorer


Theorem opabss

Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion opabss xy|xRyR

Proof

Step Hyp Ref Expression
1 df-opab xy|xRy=z|xyz=xyxRy
2 df-br xRyxyR
3 eleq1 z=xyzRxyR
4 3 biimpar z=xyxyRzR
5 2 4 sylan2b z=xyxRyzR
6 5 exlimivv xyz=xyxRyzR
7 6 abssi z|xyz=xyxRyR
8 1 7 eqsstri xy|xRyR