Metamath Proof Explorer


Theorem opbrop

Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995)

Ref Expression
Hypotheses opbrop.1 z=Aw=Bv=Cu=Dφψ
opbrop.2 R=xy|xS×SyS×Szwvux=zwy=vuφ
Assertion opbrop ASBSCSDSABRCDψ

Proof

Step Hyp Ref Expression
1 opbrop.1 z=Aw=Bv=Cu=Dφψ
2 opbrop.2 R=xy|xS×SyS×Szwvux=zwy=vuφ
3 opelxpi ASBSABS×S
4 opelxpi CSDSCDS×S
5 3 4 anim12i ASBSCSDSABS×SCDS×S
6 opex ABV
7 opex CDV
8 eleq1 x=ABxS×SABS×S
9 8 anbi1d x=ABxS×SyS×SABS×SyS×S
10 eqeq1 x=ABx=zwAB=zw
11 10 anbi1d x=ABx=zwy=vuAB=zwy=vu
12 11 anbi1d x=ABx=zwy=vuφAB=zwy=vuφ
13 12 4exbidv x=ABzwvux=zwy=vuφzwvuAB=zwy=vuφ
14 9 13 anbi12d x=ABxS×SyS×Szwvux=zwy=vuφABS×SyS×SzwvuAB=zwy=vuφ
15 eleq1 y=CDyS×SCDS×S
16 15 anbi2d y=CDABS×SyS×SABS×SCDS×S
17 eqeq1 y=CDy=vuCD=vu
18 17 anbi2d y=CDAB=zwy=vuAB=zwCD=vu
19 18 anbi1d y=CDAB=zwy=vuφAB=zwCD=vuφ
20 19 4exbidv y=CDzwvuAB=zwy=vuφzwvuAB=zwCD=vuφ
21 16 20 anbi12d y=CDABS×SyS×SzwvuAB=zwy=vuφABS×SCDS×SzwvuAB=zwCD=vuφ
22 6 7 14 21 2 brab ABRCDABS×SCDS×SzwvuAB=zwCD=vuφ
23 1 copsex4g ASBSCSDSzwvuAB=zwCD=vuφψ
24 23 anbi2d ASBSCSDSABS×SCDS×SzwvuAB=zwCD=vuφABS×SCDS×Sψ
25 22 24 bitrid ASBSCSDSABRCDABS×SCDS×Sψ
26 5 25 mpbirand ASBSCSDSABRCDψ