Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opbrop.1 | |
|
opbrop.2 | |
||
Assertion | opbrop | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opbrop.1 | |
|
2 | opbrop.2 | |
|
3 | opelxpi | |
|
4 | opelxpi | |
|
5 | 3 4 | anim12i | |
6 | opex | |
|
7 | opex | |
|
8 | eleq1 | |
|
9 | 8 | anbi1d | |
10 | eqeq1 | |
|
11 | 10 | anbi1d | |
12 | 11 | anbi1d | |
13 | 12 | 4exbidv | |
14 | 9 13 | anbi12d | |
15 | eleq1 | |
|
16 | 15 | anbi2d | |
17 | eqeq1 | |
|
18 | 17 | anbi2d | |
19 | 18 | anbi1d | |
20 | 19 | 4exbidv | |
21 | 16 20 | anbi12d | |
22 | 6 7 14 21 2 | brab | |
23 | 1 | copsex4g | |
24 | 23 | anbi2d | |
25 | 22 24 | bitrid | |
26 | 5 25 | mpbirand | |