Metamath Proof Explorer


Theorem opelf

Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelf F:ABCDFCADB

Proof

Step Hyp Ref Expression
1 fssxp F:ABFA×B
2 1 sseld F:ABCDFCDA×B
3 opelxp CDA×BCADB
4 2 3 imbitrdi F:ABCDFCADB
5 4 imp F:ABCDFCADB