Metamath Proof Explorer


Theorem opfusgr

Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020)

Ref Expression
Assertion opfusgr VXEYVEFinUSGraphVEUSGraphVFin

Proof

Step Hyp Ref Expression
1 eqid VtxVE=VtxVE
2 1 isfusgr VEFinUSGraphVEUSGraphVtxVEFin
3 opvtxfv VXEYVtxVE=V
4 3 eleq1d VXEYVtxVEFinVFin
5 4 anbi2d VXEYVEUSGraphVtxVEFinVEUSGraphVFin
6 2 5 bitrid VXEYVEFinUSGraphVEUSGraphVFin