Metamath Proof Explorer


Theorem ople1

Description: Any element is less than the orthoposet unity. ( chss analog.) (Contributed by NM, 23-Oct-2011)

Ref Expression
Hypotheses ople1.b B=BaseK
ople1.l ˙=K
ople1.u 1˙=1.K
Assertion ople1 KOPXBX˙1˙

Proof

Step Hyp Ref Expression
1 ople1.b B=BaseK
2 ople1.l ˙=K
3 ople1.u 1˙=1.K
4 eqid lubK=lubK
5 simpl KOPXBKOP
6 simpr KOPXBXB
7 eqid glbK=glbK
8 1 4 7 op01dm KOPBdomlubKBdomglbK
9 8 simpld KOPBdomlubK
10 9 adantr KOPXBBdomlubK
11 1 4 2 3 5 6 10 ple1 KOPXBX˙1˙