Metamath Proof Explorer


Theorem opltcon2b

Description: Contraposition law for strict ordering in orthoposets. ( chsscon2 analog.) (Contributed by NM, 5-Nov-2011)

Ref Expression
Hypotheses opltcon3.b B=BaseK
opltcon3.s <˙=<K
opltcon3.o ˙=ocK
Assertion opltcon2b KOPXBYBX<˙˙YY<˙˙X

Proof

Step Hyp Ref Expression
1 opltcon3.b B=BaseK
2 opltcon3.s <˙=<K
3 opltcon3.o ˙=ocK
4 1 3 opoccl KOPYB˙YB
5 4 3adant2 KOPXBYB˙YB
6 1 2 3 opltcon3b KOPXB˙YBX<˙˙Y˙˙Y<˙˙X
7 5 6 syld3an3 KOPXBYBX<˙˙Y˙˙Y<˙˙X
8 1 3 opococ KOPYB˙˙Y=Y
9 8 3adant2 KOPXBYB˙˙Y=Y
10 9 breq1d KOPXBYB˙˙Y<˙˙XY<˙˙X
11 7 10 bitrd KOPXBYBX<˙˙YY<˙˙X