Metamath Proof Explorer


Theorem opmpoismgm

Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses opmpoismgm.b B = Base M
opmpoismgm.p + M = x B , y B C
opmpoismgm.n φ B
opmpoismgm.c φ x B y B C B
Assertion opmpoismgm φ M Mgm

Proof

Step Hyp Ref Expression
1 opmpoismgm.b B = Base M
2 opmpoismgm.p + M = x B , y B C
3 opmpoismgm.n φ B
4 opmpoismgm.c φ x B y B C B
5 4 ralrimivva φ x B y B C B
6 5 adantr φ a B b B x B y B C B
7 simprl φ a B b B a B
8 simprr φ a B b B b B
9 eqid x B , y B C = x B , y B C
10 9 ovmpoelrn x B y B C B a B b B a x B , y B C b B
11 6 7 8 10 syl3anc φ a B b B a x B , y B C b B
12 11 ralrimivva φ a B b B a x B , y B C b B
13 n0 B e e B
14 2 eqcomi x B , y B C = + M
15 1 14 ismgmn0 e B M Mgm a B b B a x B , y B C b B
16 15 exlimiv e e B M Mgm a B b B a x B , y B C b B
17 13 16 sylbi B M Mgm a B b B a x B , y B C b B
18 3 17 syl φ M Mgm a B b B a x B , y B C b B
19 12 18 mpbird φ M Mgm