| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opmpoismgm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
opmpoismgm.p |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 3 |
|
opmpoismgm.n |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 4 |
|
opmpoismgm.c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
| 5 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐵 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐵 ) |
| 7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 10 |
9
|
ovmpoelrn |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) |
| 11 |
6 7 8 10
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) |
| 12 |
11
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) |
| 13 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑒 𝑒 ∈ 𝐵 ) |
| 14 |
2
|
eqcomi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( +g ‘ 𝑀 ) |
| 15 |
1 14
|
ismgmn0 |
⊢ ( 𝑒 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑒 𝑒 ∈ 𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) ) |
| 17 |
13 16
|
sylbi |
⊢ ( 𝐵 ≠ ∅ → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) 𝑏 ) ∈ 𝐵 ) ) |
| 19 |
12 18
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ Mgm ) |