Metamath Proof Explorer


Theorem opmpoismgm

Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses opmpoismgm.b 𝐵 = ( Base ‘ 𝑀 )
opmpoismgm.p ( +g𝑀 ) = ( 𝑥𝐵 , 𝑦𝐵𝐶 )
opmpoismgm.n ( 𝜑𝐵 ≠ ∅ )
opmpoismgm.c ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐶𝐵 )
Assertion opmpoismgm ( 𝜑𝑀 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 opmpoismgm.b 𝐵 = ( Base ‘ 𝑀 )
2 opmpoismgm.p ( +g𝑀 ) = ( 𝑥𝐵 , 𝑦𝐵𝐶 )
3 opmpoismgm.n ( 𝜑𝐵 ≠ ∅ )
4 opmpoismgm.c ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐶𝐵 )
5 4 ralrimivva ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 𝐶𝐵 )
6 5 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ∀ 𝑥𝐵𝑦𝐵 𝐶𝐵 )
7 simprl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑎𝐵 )
8 simprr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑏𝐵 )
9 eqid ( 𝑥𝐵 , 𝑦𝐵𝐶 ) = ( 𝑥𝐵 , 𝑦𝐵𝐶 )
10 9 ovmpoelrn ( ( ∀ 𝑥𝐵𝑦𝐵 𝐶𝐵𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 )
11 6 7 8 10 syl3anc ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 )
12 11 ralrimivva ( 𝜑 → ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 )
13 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑒 𝑒𝐵 )
14 2 eqcomi ( 𝑥𝐵 , 𝑦𝐵𝐶 ) = ( +g𝑀 )
15 1 14 ismgmn0 ( 𝑒𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 ) )
16 15 exlimiv ( ∃ 𝑒 𝑒𝐵 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 ) )
17 13 16 sylbi ( 𝐵 ≠ ∅ → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 ) )
18 3 17 syl ( 𝜑 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 ( 𝑥𝐵 , 𝑦𝐵𝐶 ) 𝑏 ) ∈ 𝐵 ) )
19 12 18 mpbird ( 𝜑𝑀 ∈ Mgm )