Metamath Proof Explorer


Theorem oppfval3

Description: Value of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses oppfval3.g φ F = G K
oppfval3.f φ F C Func D
Assertion oppfval3 Could not format assertion : No typesetting found for |- ( ph -> ( oppFunc ` F ) = <. G , tpos K >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppfval3.g φ F = G K
2 oppfval3.f φ F C Func D
3 1 fveq2d Could not format ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. G , K >. ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( oppFunc ` <. G , K >. ) ) with typecode |-
4 df-ov Could not format ( G oppFunc K ) = ( oppFunc ` <. G , K >. ) : No typesetting found for |- ( G oppFunc K ) = ( oppFunc ` <. G , K >. ) with typecode |-
5 3 4 eqtr4di Could not format ( ph -> ( oppFunc ` F ) = ( G oppFunc K ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = ( G oppFunc K ) ) with typecode |-
6 1 2 eqeltrrd φ G K C Func D
7 df-br G C Func D K G K C Func D
8 6 7 sylibr φ G C Func D K
9 oppfval Could not format ( G ( C Func D ) K -> ( G oppFunc K ) = <. G , tpos K >. ) : No typesetting found for |- ( G ( C Func D ) K -> ( G oppFunc K ) = <. G , tpos K >. ) with typecode |-
10 8 9 syl Could not format ( ph -> ( G oppFunc K ) = <. G , tpos K >. ) : No typesetting found for |- ( ph -> ( G oppFunc K ) = <. G , tpos K >. ) with typecode |-
11 5 10 eqtrd Could not format ( ph -> ( oppFunc ` F ) = <. G , tpos K >. ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = <. G , tpos K >. ) with typecode |-