Metamath Proof Explorer
		
		
		
		Description:  Base set of an opposite group.  (Contributed by Stefan O'Rear, 26-Aug-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | oppgbas.1 |  | 
					
						|  |  | oppgbas.2 |  | 
				
					|  | Assertion | oppgbas |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppgbas.1 |  | 
						
							| 2 |  | oppgbas.2 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 1 | oppgval |  | 
						
							| 5 |  | baseid |  | 
						
							| 6 |  | basendxnplusgndx |  | 
						
							| 7 | 4 5 6 | setsplusg |  | 
						
							| 8 | 2 7 | eqtri |  |