Metamath Proof Explorer


Theorem oppgle

Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses oppglt.1 O = opp 𝑔 R
oppgle.2 ˙ = R
Assertion oppgle ˙ = O

Proof

Step Hyp Ref Expression
1 oppglt.1 O = opp 𝑔 R
2 oppgle.2 ˙ = R
3 eqid + R = + R
4 3 1 oppgval O = R sSet + ndx tpos + R
5 pleid le = Slot ndx
6 plendxnplusgndx ndx + ndx
7 4 5 6 setsplusg R = O
8 2 7 eqtri ˙ = O