Metamath Proof Explorer


Theorem opprdomn

Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 O=opprR
Assertion opprdomn RDomnODomn

Proof

Step Hyp Ref Expression
1 opprdomn.1 O=opprR
2 domnnzr RDomnRNzRing
3 1 opprnzr RNzRingONzRing
4 2 3 syl RDomnONzRing
5 eqid BaseR=BaseR
6 eqid R=R
7 eqid 0R=0R
8 5 6 7 domneq0 RDomnyBaseRxBaseRyRx=0Ry=0Rx=0R
9 8 3com23 RDomnxBaseRyBaseRyRx=0Ry=0Rx=0R
10 eqid O=O
11 5 6 1 10 opprmul xOy=yRx
12 11 eqeq1i xOy=0RyRx=0R
13 orcom x=0Ry=0Ry=0Rx=0R
14 9 12 13 3bitr4g RDomnxBaseRyBaseRxOy=0Rx=0Ry=0R
15 14 biimpd RDomnxBaseRyBaseRxOy=0Rx=0Ry=0R
16 15 3expb RDomnxBaseRyBaseRxOy=0Rx=0Ry=0R
17 16 ralrimivva RDomnxBaseRyBaseRxOy=0Rx=0Ry=0R
18 1 5 opprbas BaseR=BaseO
19 1 7 oppr0 0R=0O
20 18 10 19 isdomn ODomnONzRingxBaseRyBaseRxOy=0Rx=0Ry=0R
21 4 17 20 sylanbrc RDomnODomn