Metamath Proof Explorer


Theorem opprqusbas

Description: The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b B=BaseR
opprqus.o O=opprR
opprqus.q Q=R/𝑠R~QGI
opprqusbas.r φRV
opprqusbas.i φIB
Assertion opprqusbas φBaseopprQ=BaseO/𝑠O~QGI

Proof

Step Hyp Ref Expression
1 opprqus.b B=BaseR
2 opprqus.o O=opprR
3 opprqus.q Q=R/𝑠R~QGI
4 opprqusbas.r φRV
5 opprqusbas.i φIB
6 eqid opprQ=opprQ
7 eqid BaseQ=BaseQ
8 6 7 opprbas BaseQ=BaseopprQ
9 2 1 oppreqg RVIBR~QGI=O~QGI
10 4 5 9 syl2anc φR~QGI=O~QGI
11 10 qseq2d φB/R~QGI=B/O~QGI
12 3 a1i φQ=R/𝑠R~QGI
13 1 a1i φB=BaseR
14 ovexd φR~QGIV
15 12 13 14 4 qusbas φB/R~QGI=BaseQ
16 eqidd φO/𝑠O~QGI=O/𝑠O~QGI
17 2 1 opprbas B=BaseO
18 17 a1i φB=BaseO
19 ovexd φO~QGIV
20 2 fvexi OV
21 20 a1i φOV
22 16 18 19 21 qusbas φB/O~QGI=BaseO/𝑠O~QGI
23 11 15 22 3eqtr3d φBaseQ=BaseO/𝑠O~QGI
24 8 23 eqtr3id φBaseopprQ=BaseO/𝑠O~QGI