Metamath Proof Explorer


Theorem oprabex

Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004)

Ref Expression
Hypotheses oprabex.1 AV
oprabex.2 BV
oprabex.3 xAyB*zφ
oprabex.4 F=xyz|xAyBφ
Assertion oprabex FV

Proof

Step Hyp Ref Expression
1 oprabex.1 AV
2 oprabex.2 BV
3 oprabex.3 xAyB*zφ
4 oprabex.4 F=xyz|xAyBφ
5 moanimv *zxAyBφxAyB*zφ
6 3 5 mpbir *zxAyBφ
7 6 funoprab Funxyz|xAyBφ
8 1 2 xpex A×BV
9 dmoprabss domxyz|xAyBφA×B
10 8 9 ssexi domxyz|xAyBφV
11 funex Funxyz|xAyBφdomxyz|xAyBφVxyz|xAyBφV
12 7 10 11 mp2an xyz|xAyBφV
13 4 12 eqeltri FV