Metamath Proof Explorer


Theorem oprabexd

Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by AV, 9-Aug-2024)

Ref Expression
Hypotheses oprabexd.1 φAV
oprabexd.2 φBW
oprabexd.3 φxAyB*zψ
oprabexd.4 φF=xyz|xAyBψ
Assertion oprabexd φFV

Proof

Step Hyp Ref Expression
1 oprabexd.1 φAV
2 oprabexd.2 φBW
3 oprabexd.3 φxAyB*zψ
4 oprabexd.4 φF=xyz|xAyBψ
5 3 ex φxAyB*zψ
6 moanimv *zxAyBψxAyB*zψ
7 5 6 sylibr φ*zxAyBψ
8 7 alrimivv φxy*zxAyBψ
9 funoprabg xy*zxAyBψFunxyz|xAyBψ
10 8 9 syl φFunxyz|xAyBψ
11 dmoprabss domxyz|xAyBψA×B
12 1 2 xpexd φA×BV
13 ssexg domxyz|xAyBψA×BA×BVdomxyz|xAyBψV
14 11 12 13 sylancr φdomxyz|xAyBψV
15 funex Funxyz|xAyBψdomxyz|xAyBψVxyz|xAyBψV
16 10 14 15 syl2anc φxyz|xAyBψV
17 4 16 eqeltrd φFV