Metamath Proof Explorer


Theorem oprabrexex2

Description: Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Hypotheses oprabrexex2.1 AV
oprabrexex2.2 xyz|φV
Assertion oprabrexex2 xyz|wAφV

Proof

Step Hyp Ref Expression
1 oprabrexex2.1 AV
2 oprabrexex2.2 xyz|φV
3 df-oprab xyz|wAφ=v|xyzv=xyzwAφ
4 rexcom4 wAxyzv=xyzφxwAyzv=xyzφ
5 rexcom4 wAyzv=xyzφywAzv=xyzφ
6 rexcom4 wAzv=xyzφzwAv=xyzφ
7 r19.42v wAv=xyzφv=xyzwAφ
8 7 exbii zwAv=xyzφzv=xyzwAφ
9 6 8 bitri wAzv=xyzφzv=xyzwAφ
10 9 exbii ywAzv=xyzφyzv=xyzwAφ
11 5 10 bitri wAyzv=xyzφyzv=xyzwAφ
12 11 exbii xwAyzv=xyzφxyzv=xyzwAφ
13 4 12 bitr2i xyzv=xyzwAφwAxyzv=xyzφ
14 13 abbii v|xyzv=xyzwAφ=v|wAxyzv=xyzφ
15 3 14 eqtri xyz|wAφ=v|wAxyzv=xyzφ
16 df-oprab xyz|φ=v|xyzv=xyzφ
17 16 2 eqeltrri v|xyzv=xyzφV
18 1 17 abrexex2 v|wAxyzv=xyzφV
19 15 18 eqeltri xyz|wAφV