Metamath Proof Explorer


Theorem opropabco

Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Hypotheses opropabco.1 x A B R
opropabco.2 x A C S
opropabco.3 F = x y | x A y = B C
opropabco.4 G = x y | x A y = B M C
Assertion opropabco M Fn R × S G = M F

Proof

Step Hyp Ref Expression
1 opropabco.1 x A B R
2 opropabco.2 x A C S
3 opropabco.3 F = x y | x A y = B C
4 opropabco.4 G = x y | x A y = B M C
5 opelxpi B R C S B C R × S
6 1 2 5 syl2anc x A B C R × S
7 df-ov B M C = M B C
8 7 eqeq2i y = B M C y = M B C
9 8 anbi2i x A y = B M C x A y = M B C
10 9 opabbii x y | x A y = B M C = x y | x A y = M B C
11 4 10 eqtri G = x y | x A y = M B C
12 6 3 11 fnopabco M Fn R × S G = M F