Metamath Proof Explorer


Theorem opsqrlem3

Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1 THrmOp
opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
opsqrlem2.3 F=seq1S×0hop
Assertion opsqrlem3 GHrmOpHHrmOpGSH=G+op12·opT-opGG

Proof

Step Hyp Ref Expression
1 opsqrlem2.1 THrmOp
2 opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
3 opsqrlem2.3 F=seq1S×0hop
4 id z=Gz=G
5 4 4 coeq12d z=Gzz=GG
6 5 oveq2d z=GT-opzz=T-opGG
7 6 oveq2d z=G12·opT-opzz=12·opT-opGG
8 4 7 oveq12d z=Gz+op12·opT-opzz=G+op12·opT-opGG
9 eqidd w=HG+op12·opT-opGG=G+op12·opT-opGG
10 id x=zx=z
11 10 10 coeq12d x=zxx=zz
12 11 oveq2d x=zT-opxx=T-opzz
13 12 oveq2d x=z12·opT-opxx=12·opT-opzz
14 10 13 oveq12d x=zx+op12·opT-opxx=z+op12·opT-opzz
15 eqidd y=wz+op12·opT-opzz=z+op12·opT-opzz
16 14 15 cbvmpov xHrmOp,yHrmOpx+op12·opT-opxx=zHrmOp,wHrmOpz+op12·opT-opzz
17 2 16 eqtri S=zHrmOp,wHrmOpz+op12·opT-opzz
18 ovex G+op12·opT-opGGV
19 8 9 17 18 ovmpo GHrmOpHHrmOpGSH=G+op12·opT-opGG