Metamath Proof Explorer


Theorem opsrlmod

Description: Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses opsrring.o O=IordPwSerRT
opsrring.i φIV
opsrring.r φRRing
opsrring.t φTI×I
Assertion opsrlmod φOLMod

Proof

Step Hyp Ref Expression
1 opsrring.o O=IordPwSerRT
2 opsrring.i φIV
3 opsrring.r φRRing
4 opsrring.t φTI×I
5 eqid ImPwSerR=ImPwSerR
6 5 2 3 psrlmod φImPwSerRLMod
7 eqidd φBaseImPwSerR=BaseImPwSerR
8 5 1 4 opsrbas φBaseImPwSerR=BaseO
9 5 1 4 opsrplusg φ+ImPwSerR=+O
10 9 oveqdr φxBaseImPwSerRyBaseImPwSerRx+ImPwSerRy=x+Oy
11 5 2 3 psrsca φR=ScalarImPwSerR
12 5 1 4 2 3 opsrsca φR=ScalarO
13 eqid BaseR=BaseR
14 5 1 4 opsrvsca φImPwSerR=O
15 14 oveqdr φxBaseRyBaseImPwSerRxImPwSerRy=xOy
16 7 8 10 11 12 13 15 lmodpropd φImPwSerRLModOLMod
17 6 16 mpbid φOLMod