Metamath Proof Explorer


Theorem opsrtos

Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses opsrso.o O=IordPwSerRT
opsrso.i φIV
opsrso.r φRToset
opsrso.t φTI×I
opsrso.w φTWeI
Assertion opsrtos φOToset

Proof

Step Hyp Ref Expression
1 opsrso.o O=IordPwSerRT
2 opsrso.i φIV
3 opsrso.r φRToset
4 opsrso.t φTI×I
5 opsrso.w φTWeI
6 eqid ImPwSerR=ImPwSerR
7 eqid BaseImPwSerR=BaseImPwSerR
8 eqid <R=<R
9 eqid T<bagI=T<bagI
10 eqid h0I|h-1Fin=h0I|h-1Fin
11 biid zh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=yw
12 eqid O=O
13 1 2 3 4 5 6 7 8 9 10 11 12 opsrtoslem2 φOToset