Metamath Proof Explorer


Theorem opsrval2

Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrval2.s S=ImPwSerR
opsrval2.o O=IordPwSerRT
opsrval2.l ˙=O
opsrval2.i φIV
opsrval2.r φRW
opsrval2.t φTI×I
Assertion opsrval2 φO=SsSetndx˙

Proof

Step Hyp Ref Expression
1 opsrval2.s S=ImPwSerR
2 opsrval2.o O=IordPwSerRT
3 opsrval2.l ˙=O
4 opsrval2.i φIV
5 opsrval2.r φRW
6 opsrval2.t φTI×I
7 eqid BaseS=BaseS
8 eqid <R=<R
9 eqid T<bagI=T<bagI
10 eqid h0I|h-1Fin=h0I|h-1Fin
11 eqid xy|xyBaseSzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywx=y=xy|xyBaseSzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywx=y
12 1 2 7 8 9 10 11 4 5 6 opsrval φO=SsSetndxxy|xyBaseSzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywx=y
13 1 2 7 8 9 10 3 6 opsrle φ˙=xy|xyBaseSzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywx=y
14 13 opeq2d φndx˙=ndxxy|xyBaseSzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywx=y
15 14 oveq2d φSsSetndx˙=SsSetndxxy|xyBaseSzh0I|h-1Finxz<Ryzwh0I|h-1FinwT<bagIzxw=ywx=y
16 12 15 eqtr4d φO=SsSetndx˙