Metamath Proof Explorer


Theorem opth1

Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opth1.1 AV
opth1.2 BV
Assertion opth1 AB=CDA=C

Proof

Step Hyp Ref Expression
1 opth1.1 AV
2 opth1.2 BV
3 1 2 opi1 AAB
4 id AB=CDAB=CD
5 3 4 eleqtrid AB=CDACD
6 1 sneqr A=CA=C
7 6 a1i ACDA=CA=C
8 oprcl ACDCVDV
9 8 simpld ACDCV
10 prid1g CVCCD
11 9 10 syl ACDCCD
12 eleq2 A=CDCACCD
13 11 12 syl5ibrcom ACDA=CDCA
14 elsni CAC=A
15 14 eqcomd CAA=C
16 13 15 syl6 ACDA=CDA=C
17 id ACDACD
18 dfopg CVDVCD=CCD
19 8 18 syl ACDCD=CCD
20 17 19 eleqtrd ACDACCD
21 elpri ACCDA=CA=CD
22 20 21 syl ACDA=CA=CD
23 7 16 22 mpjaod ACDA=C
24 5 23 syl AB=CDA=C